
Monad defined by a signature with bindings1

Vladimir Voevodsky2,3

July 2014

Abstract

???

1 Introduction

We first recall the notion of a signature with bindings (see [?] where it is simply called a signature).

This is one of short papers based on the material of [?].

2 Signatures and expressions with bindings

Let A be the set of finite sequences (n1, . . . , nk) where ni ∈ N. Elements of A will be called arities.

Definition 2.1 [2014.07.14.def1] A signature (with bindings) is a pair S = (S, a) where S is a
set and a is a function from S to A.

Elements of S are called symbols or operations of the signature and for s ∈ S, a(s) is called the
arity of s.

Goal: define Exp(S, X) for X ∈ FSets in such a way as to make the proof that it is a monad (in
X) as simple as possible.

In the case when all arities are of the form (0, . . . , 0) we get the usual notion of a (single-sorted)
algebraic signature.

3 Systems of expressions

Note: [?], [?].

Free systems of expressions. Let M be a set and let T (M) be the set of finite rooted trees
whose vertices (including the root) are labeled by elements of M and such that for any vertex the
set of edges leaving this vertex is ordered. Note that such ordered trees have no symmetries. We
will use the following notations. For T ∈ T (M) let V rtx(T ) be the set of vertices of T and for
v ∈ V rtx(T ) let lbl(v) = lbl(v)T ∈ M be the label on v. We will sometimes write v ∈ T instead
of v ∈ V rtx(T ). For v ∈ V rtx(T ) let [v] = [v]T ∈ T (M) be the subtree in T which consists of
v and all the vertices under v. Let val(v) be the valency of v i.e. the number of edges leaving v

12000 Mathematical Subject Classification: 03B15, 03B22, 03F50, 03G25
2School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
3Work on this paper was supported by NSF grant 1100938.

1



and ch1(v), . . . , chval(v)(v) ∈ V rtx(T ) be the ”children” of v i.e. the end points of these edges. Let
further bri(v) = [chi(v)] be the branches of [v]. We write v ≤ w (resp. v < w) if v ∈ [w] (resp.
v ∈ [w]− w). We say that two vertices v and w are independent if v /∈ [w] and w /∈ [v].

For three sets A,B and Cont let

AllExp(A,B;Con) = T (AqB q (Con× (qn≥0Bn)))

Elements of AllExp(A,B;Con) are called expressions over the alphabet Con (or with a set of
constructors Con), free variables from A and bound variables from B.

An expression is called unambiguous if it satisfies the following conditions:

1. if lbl(v) ∈ AqB then val(v) = 0,

2. (a) if v < v′, lbl(v) = (c;x1, . . . , xn) and lbl(v′) = (c′;x′1, . . . , x
′
n′) then

{x1, . . . , xn} ∩ {x′1, . . . , x′n′} = ∅,
(b) if lbl(v) = (c;x1, . . . , xn) then xi 6= xj for i 6= j,

3. if lbl(v) = (c;x1, . . . , xn) and lbl(v′) ∈ {x1, . . . , xn} then v′ ∈ [v].

The first conditions says that a vertex labeled by a variable is a leaf. The second one is equivalent
to saying that if the same variable is bound at two different vertices v, v′ then these vertices are
independent i.e. [v] ∩ [v′] = ∅ and that a vertex can not bind the same variable twice. The third
one says that all the leaves labeled by a bound variable lie under the vertex where it is boud. We
let UAExp(A,B;Con) denote the subset of unambiguous expressions in AllExp(A,B;Con). Note
that for for any T ∈ UAExp(A,B;Con) and v ∈ V rtx(T ) there is a subset Ext(v) ⊂ B such that

[v] ∈ UAExp(Aq Ext(v), B\Ext(v);Con)

Any triple of maps fCon : A→ A′, fB : B → B′, fCon : Con→ Con′ define a map

f∗ = (fA, fB, fCon)∗ : AllExp(A,B;Con)→ AllExp(A′, B′;Con′)

which changes labels in the obvious way. If fB is injective then f∗ maps unambiguous expressions
to unambiguous ones.

An element T of UAExp(A,B;Con) is said to be strictly unambiguous if for any v 6= v′ in
V rtx(T ) such that lbl(v) = (c;x1, . . . , xn) and lbl(v′) = (c′;x′1, . . . , x

′
n′) one has {x1, , . . . , xn} ∩

{x′1, . . . , x′n′} = ∅ i.e. if the names of all bound variables are different. We let SUAExp(A,B;Con)
denote the subset of strictly unambiguous expressions in UAExp(A,B;Con).

An element T of UAExp(A,B;Con) is said to be α-equivalent to an element T ′ of UAExp(A,B′;Con)
if there is a set B′′ , an element T ′′ ∈ UAExp(A,B′′;Con) and two maps f : B′′ → B, f ′ : B′′ → B′

such that T = (Id, f, Id)∗(T
′′) and T ′ = (Id, f ′, Id)∗(T

′′). The following lemma is straightforward:

Lemma 3.1 [2009.09.08.l1] For any two sets A and Con one has:

1. α-equivalence is an equivalence relation,

2. for any set B and any element T ∈ UAExp(A,B;Con) there exists an element
T ′ ∈ UAExp(A,N;Con) such that T

α∼ T ′ and T ′ is strictly unambiguous,

2



3. fwo strictly unambiguous elements T, T ′ ∈ UAExp(A,B;Con) are α-equivalent if and only if
there exists a permutation f : B → B such that (Id, f, Id)∗(T ) = T ′ (cf. swapping).

We let Expα(A;Con) denote the set of α-equivalence classes in qBUAExp(A,B;Con). In view
of Lemma ?? this set is well defined and can be also defined as the set of equivalence classes in
SUAExp(A,N;Con) modulo the equivalence relation generated by the permutations on N.

Note that for two α-equivalent expressions T1, T2 and a vertex v ∈ V (T1) = V (T2) the expressions
[v]T1 and [v]T2 need not be α-equivalent since some of the variables which are bound in T1 may be
free in [v].

The maps (fA, fB, fCon)∗ respect α-equivalence. Therefore for any fA : A→ A′ and fCon : Con→
Con′ there is a well defined map

(fA, fCon)∗ : Expα(A;Con)→ Exp(A′;Con′)

which make Expα(−;−) into a covariant functors from pairs of sets to sets. In addition there is
a well defined notion of substitution on Expα(−;Con) which may be considered as a collection of
maps of the form:

Expα(A;Con)× (
∏
a∈A

Expα(Xa;Con))→ Expα(qa∈AXa;Con)

given for all pairs (A; {Xa}a∈A) where A is a set and {Xa}a∈A a family of sets parametrized by A.
Alternatively, the substitution structure can be seen as a collection of maps

Expα(Expα(A;Con);Con)→ Expα(A;Con)

given for all A and Con. These maps make the functor Expα(−;Con) into a monad (triple) on the
category of sets which functorially depends on the set Con.

Example 3.2 [lambda] The mapping which sends a set X to the set of α-equivalence classes
of terms of the untyped λ-calculus with free variables from X is a sub-triple of Expα(−;Con)
where Con = {λ, ev}. Elements T of UAExp(X,N; {λ, ev}) which belong to this sub-triple are
characterized by the following ”local” conditions:

1. for each v ∈ T , lbl(v) ∈ X qNq {ev} q {λ} ×N

2. if lbl(v) ∈ {λ} ×N then val(v) = 1

3. if lbl(v) = ev then val(v) = 2.

Example 3.3 [propositional]The mapping which sends a set X to the set of terms of the propo-
sitional calculus with free variables from X is a sub-triple of Expα(−;C0) where C0 = {∨,∧, q,⇒}.
Elements T of UAExp(X,N;C0) which belong to this sub-triple are characterized by the following
”local” conditions:

1. for all v ∈ T , lbl(v) ∈ X q C0

2. if lbl(v) ∈ {∨,∧,⇒} then val(v) = 2

3. if lbl(v) =q then val(v) = 1.

3



Example 3.4 [multisorted] Consider first order logic with several sorts GS = {S1, . . . , Sn}. Let
GP be the set of generating predicates and GF the set of generating functions. Let C1 = C0q{∀, ∃}
and C2 = C1qGPqGFqGS. We can identify the α-equivalence classes of formulas of the first order
language defined by GS and GF with free variables from a set X with a subset in Expα(X,N;C2).
Vertices which are labeled by (∀;x) and (∃;x) have valency two. For such a vertex v, the first branch
of [v] is one vertex labeled by an element of GS giving the sort over which the quantification occurs
and the second branch is the expression which is quantified. Now however, these subsets do not
form a sub-triple of Expα since not all substitutions are allowed. By allowing all substitutions
irrespectively of the sort we get (for each X) a subset in Expα(X;C2) whose elements will be called
pseudo-formulas.

The following operations on expressions are well defined up to the α-equivalence:

1. If T1, . . . , Tm ∈ Expα(A;Con), a1, . . . , an are pair-wise different elements of A and M ∈
Con we will write (M,a1, . . . , an)(T1, . . . , Tm) for the expression whose root v is labeled by
(M,a1, . . . , an), val(v) = n and bri(v) = Ti.

2. For T1, T2 ∈ Expα(A;Con) and v ∈ T1 we let T1(T2/[v]) be the expression obtained by
replacing [v] in T1 with T ′2 where T ′2 is obtained from T2 by the change of bound variables
such that the bound variables of T ′2 do not conflict with the variables of T1.

3. For T,R1, . . . , Rn ∈ Expα(A;Con) and y1, . . . , yn ∈ A we let T (R1/y1, . . . , Rn/yn) denote the
expression obtained by changing Ri’s by α-equivalent R′i such that bnd(R′i) ∩ bnd(Rj)

′ = ∅
for i 6= j, changing T to an α-equivalent T ′ such that bnd(T ′)∩ (var(R′1)∪ . . .∪ var(R′n)) = ∅
and then replacing all the leaves of T ′ marked by yi by R′i.

In all the examples considered above, these operations correspond to the usual operations on
formulas. The first operation can be used to directly associate expressions in our sense with the
formulas. For example, the expression associated with the formula ∀x : S.P (x, y) in a multi-sorted
predicate calculus is (∀, x)(S, P (x, y)) where as was mentioned above we use the same notation for
an element of AqB q (Con× (qn≥0Bn)) and the one vertex tree with the corresponding label.

Note: about representing elements of AllExp(A,B;Con) by linear sequences of elements of A q
Bq??.

Reduction structures. Another component of the structure present in systems of expressions
used in formal systems is the reduction relation. It is very important for our approach to type
systems that the reduction relation is defined on all pseudo-formulas and is compatible with the
substitution structure even when not all psedu-formulas are well formed formulas. In what follows
we will consider, instead of a particular syntactic system, a pair (S, .) where S is a continuous
triple on the category of sets and . is a reduction structure on S i.e. a collection of relations .X
on S(X) given for all finite sets X satisfying the following two conditions:

1. if E ∈ S({x1, . . . , xn}), f1, . . . , fn, f ′i ∈ S({y1, . . . , ym}) and fi .{y1,...,ym} f
′
i then

E(f1/x1, . . . , fi/xi, . . . fn/xn) .{x1,...,xn} E(f1/x1, . . . , f
′
i/xi, . . . fn/xn),

2. if E,E′ ∈ S({x1, . . . , xn}), f1, . . . , fn ∈ S({y1, . . . , ym}) and E .{x1,...,xn} E
′ then

E(f1/x1, . . . , fn/xn) .{x1,...,xn} E
′(f1/x1, . . . , fn/xn).

4



The following two results are obvious but important.

Proposition 3.5 [2009.10.17.prop1] Let S be a continuous triple on Sets and .α be a family of
reduction structures on S. Then the intersection ∩α.α : X 7→ ∩α.α,X is a reduction structure on
S.

Corollary 3.6 [2009.10.17.cor1] For any family (Xα, preα) of pairs of the form (X, pre) where
X is a set and pre is a relation on S(X) (i.e. a subset of S(X)× S(X)) there exists the smallest
reduction structure . = .(Xα, preα) on S such that for each α and each (f, g) ∈ preα one has f . g.

5


